Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Elainna Jentz x
Clear All Modify Search

Amy Miller, Elainna Jentz, and Cassandra Duncan

Graphical abstract

13-lined ground squirrels (TLGS; Ictidomys tridecemlineatus) are small, omnivorous, fossorial, hibernating sciurids. TLGS are seasonal induced ovulators, with a ~28-day gestation period. The main goal of this study was to ascertain whether enzyme-linked immunosorbent assay (ELISA) of TLGS fecal samples can be used to non-invasively detect pregnancy. Competitive ELISAs for progestogen metabolites were conducted on feces collected from a group of (n =13) females. Feces were collected thrice weekly during the breeding season and frozen for subsequent analysis. Competitive ELISAs were run using progesterone kits ), setting data against seven different time-points between hibernation, emergence, and litter birthdate. Eleven females produced litters. ELISA data from the (n = 2) non-pregnant females demonstrated no rise in progestogen metabolites at any point over 28 days. In contrast, data from the (n = 11) pregnant females all demonstrated a pronounced rise in progestogen metabolites, with most animals displaying progesterone withdrawal in the final week of gestation. A >20-fold rise in progestogen metabolite was observed halfway through gestation (P < 005). Analysis on litter size and progestogen metabolite concentration showed no significant correlation (r2 = −0.615). Initial correlation analysis done on sex ratio of litters vs progestogen metabolites showed no significant effect of progesterone on sex ratios (males: r2 = −0.772, females: r2 = 0.375). This work demonstrated that TLGS also undergo progesterone withdrawal about a week before parturition. We have ascertained that a commercially available progesterone assay kit can detect a significant elevation in progestogen metabolites in this species about halfway through gestation.

Lay summary

This research was conducted to discover whether pregnancy prediction is possible in female 13-lined ground squirrels (TLGS; a small hibernating ground squirrel named for their number of stripes). Pregnancy status in this species, we postulated, could be anticipated by generating profiles for individuals via a non-invasive technique known as fecal endocrine hormone profiling. Fecal samples were collected from 13 females thrice weekly for 4 weeks post-hibernation in the breeding season of 2016. Fecal samples were then processed and run through an assay known as an ELISA giving concentrations of hormone metabolites excreted through feces. We then set these samples against time points to develop a profile for each female. We have ascertained that elevated progesterone (potential pregnancy) can be detected by a commercially available assay kit. Understanding hormone patterns in animals gives researchers a better idea of best husbandry practices, including breeding in managed care.